Deep Learning Architectures for Approximating Goldbach's Function in New Regions

Avigail Stekel, Amos Azaria

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

Goldbach conjecture is one of the most famous open mathematical problems. He asserts that: Every even number greater than two is the sum of two prime numbers. The Goldbach function receives an even number and returns the number of different ways to write it as an unordered sum of two prime numbers. We developed a simple multilayer perceptron that attempts to predict Goldbach's function. This simple model performs well when trained and tested on numbers up to 4 million. However, as expected, the model's performance significantly deteriorates when trained on smaller numbers (up to 4 million) but tested on larger numbers (4-10 million). To overcome this problem, we present two novel deep learning architectures. In these architectures, we introduce two types of multiplication layers, which we believe are more appropriate for solving mathematical relations. We show that both architectures significantly outperform the simple multilayer perceptron when trained on smaller numbers and tested on larger numbers. We further improve the performance of the deep learning architectures by using a known analytically derived estimation that is used in order to normalize the model's output.

שפה מקוריתאנגלית
עמודים (מ-עד)27-35
מספר עמודים9
כתב עתIEEE Intelligent Systems
כרך37
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Deep Learning Architectures for Approximating Goldbach's Function in New Regions'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי