Cyclic odd degree base change lifting for unitary groups in three variables

Ping Shun Chan, Yuval Z. Flicker

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

Let F be a number field or a p-adic field of odd residual characteristic. Let E be a quadratic extension of F, and F′ an odd degree cyclic field extension of F. We establish a base-change functorial lifting of automorphic (respectively, admissible) representations from the unitary group U(3, E/F) to the unitary group U(3, F′ E/F′). As a consequence, we classify, up to certain restrictions, the packets of U(3, F′ E/F′) which contain irreducible automorphic (respectively, admissible) representations invariant under the action of the Galois group Gal(F′ E/E). We also determine the invariance of individual representations. This work is the first study of base change into an algebraic group whose packets are not all singletons, and which does not satisfy the rigidity, or 'strong multiplicity one', theorem. Novel phenomena are encountered: e.g. there are invariant packets where not every irreducible automorphic (respectively, admissible) member is Galois-invariant. The restriction that the residual characteristic of the local fields be odd may be removed once the multiplicity one theorem for U(3) is proved to hold unconditionally without restriction on the dyadic places.

שפה מקוריתאנגלית
עמודים (מ-עד)1247-1309
מספר עמודים63
כתב עתInternational Journal of Number Theory
כרך5
מספר גיליון7
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - נוב׳ 2009
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Cyclic odd degree base change lifting for unitary groups in three variables'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי