Criticality-based Varying Step-number Algorithm for Reinforcement Learning

Yitzhak Spielberg, Amos Azaria

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

In the context of reinforcement learning we introduce the concept of criticality of a state, which indicates the extent to which the choice of action in that particular state influences the expected return. That is, a state in which the choice of action is more likely to influence the final outcome is considered as more critical than a state in which it is less likely to influence the final outcome. We formulate a criticality-based varying step number algorithm (CVS) - a flexible step number algorithm that utilizes the criticality function provided by a human, or learned directly from the environment. We test it in three different domains including the Atari Pong environment, Road-Tree environment, and Shooter environment. We demonstrate that CVS is able to outperform popular learning algorithms such as Deep Q-Learning and Monte Carlo.

שפה מקוריתאנגלית
מספר המאמר2150019
כתב עתInternational Journal on Artificial Intelligence Tools
כרך30
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יוני 2021

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Criticality-based Varying Step-number Algorithm for Reinforcement Learning'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי