Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

4 ציטוטים ‏(Scopus)

תקציר

In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

שפה מקוריתאנגלית
עמודים (מ-עד)307-314
מספר עמודים8
כתב עתComputers and Concrete
כרך31
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אפר׳ 2023

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי