Counting stars and other small subgraphs in sublinear time

Mira Gonen, Dana Ron, Yuval Shavitt

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

11 ציטוטים ‏(Scopus)

תקציר

Detecting and counting the number of copies of certain subgraphs (also known as network motifs or graphlets), is motivated by applications in a variety of areas ranging from Biology to the study of the World-Wide-Web. Several polynomial-time algorithms have been suggested for counting or detecting the number of occurrences of certain network motifs. However, a need for more efficient algorithms arises when the input graph is very large, as is indeed the case in many applications of motif counting. In this paper we design sublinear-time algorithms for approximating the number of copies of certain constant-size subgraphs in a graph G. That is, our algorithms do not read the whole graph, but rather query parts of the graph. Specifically, we consider algorithms that may query the degree of any vertex of their choice and may ask for any neighbor of any vertex of their choice. The main focus of this work is on the basic problem of counting the number of length-2 paths and more generally on counting the number of stars of a certain size. Specifically, we design an algorithm that, given an approximation parameter 0 < ε < 1 and query access to a graph G, outputs an estimate υ̂s such that with high constant probability, (1-ε)υs(G) ≤ υ̂s ≤ (1 + ε)υs(G), where υs(G) denotes the number of stars of size s + 1 in the graph. The expected query complexity and running time of the algorithm are (Chemical Equation Presented). poly(log n, 1/ε). We also prove lower bounds showing that this algorithm is tight up to polylogarithmic factors in n and the dependence on ε. Our work extends the work of Feige (SIAM Journal on Computing, 2006) and Goldreich and Ron (Random Structures and Algorithms, 2008) on approximating the number of edges (or average degree) in a graph. Combined with these results, our result can be used to obtain an estimate on the variance of the degrees in the graph and corresponding higher moments. In addition, we give some (negative) results on approximating the number of triangles and on approximating the number of length-3-paths in sublinear time.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
מוציא לאורAssociation for Computing Machinery (ACM)
עמודים99-116
מספר עמודים18
מסת"ב (מודפס)9780898717013
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2010
פורסם באופן חיצוניכן
אירוע21st Annual ACM-SIAM Symposium on Discrete Algorithms - Austin, TX, ארצות הברית
משך הזמן: 17 ינו׳ 201019 ינו׳ 2010

סדרות פרסומים

שםProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

כנס

כנס21st Annual ACM-SIAM Symposium on Discrete Algorithms
מדינה/אזורארצות הברית
עירAustin, TX
תקופה17/01/1019/01/10

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Counting stars and other small subgraphs in sublinear time'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי