Converting Tessellations into Graphs: From Voronoi Tessellations to Complete Graphs

Artem Gilevich, Shraga Shoval, Michael Nosonovsky, Mark Frenkel, Edward Bormashenko

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

A mathematical procedure enabling the transformation of an arbitrary tessellation of a surface into a bi-colored, complete graph is introduced. Polygons constituting the tessellation are represented by vertices of the graphs. Vertices of the graphs are connected by two kinds of links/edges, namely, by a green link, when polygons have the same number of sides, and by a red link, when the polygons have a different number of sides. This procedure gives rise to a semi-transitive, complete, bi-colored Ramsey graph. The Ramsey semi-transitive number was established as (Formula presented.) Shannon entropies of the tessellation and graphs are introduced. Ramsey graphs emerging from random Voronoi and Poisson Line tessellations were investigated. The limits (Formula presented.), where N is the total number of green and red seeds, (Formula presented.) and (Formula presented.), were found (Formula presented.) 0.272 ± 0.001 (Voronoi) and (Formula presented.) 0.47 ± 0.02 (Poisson Line). The Shannon Entropy for the random Voronoi tessellation was calculated as (Formula presented.) 1.690 ± 0.001 and for the Poisson line tessellation as S = 1.265 ± 0.015. The main contribution of the paper is the calculation of the Shannon entropy of the random point process and the establishment of the new bi-colored Ramsey graph on top of the tessellations.

שפה מקוריתאנגלית
מספר המאמר2426
כתב עתMathematics
כרך12
מספר גיליון15
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוג׳ 2024

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Converting Tessellations into Graphs: From Voronoi Tessellations to Complete Graphs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי