Convergence of random processes without discontinuities of the second kind and limit theorems for sums of independent random variables

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

Let €(t),…» €n(t)»… and (t) be random processes on the interval [0, 1], without discontinuities of the second kind. A. V. Skorohod has given necessary and sufficient conditions under which the distribution of ƒ(€(t)) converges to the distribution of ƒ(€ (t)) as ƒ i->oo for any functional ƒ continuous in the Skorohod metric. In the following we shall consider only stochastically right-continuous processes without discontinuities of the second kind, i.e., processes such that the space X of their sample functions is the space of all right-continuous functions € (t) T (0 < t < 1) without discontinuities of the second kind. For a set T» {t1, C [0, 1] the metric pT is defined on as in 2.3. The metric pT defines on the X the minimal topology in which all functionals continuous in Skorohod’s metric and also the functionals x(t1 - 0), x(t1),…»x(tn - 0), *(tn),… are continuous. We will give necessary and sufficient conditions under which the distribution of ƒ(€n(t)) converges to the distribution of ƒ (€ (t)) as n-> oo for any completely continuous functional ƒ, i.e. for any functional ƒ which is continuous in any of the metrics pT defined in 2.3.

שפה מקוריתאנגלית
עמודים (מ-עד)361-379
מספר עמודים19
כתב עתTransactions of the American Mathematical Society
כרך234
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1977
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Convergence of random processes without discontinuities of the second kind and limit theorems for sums of independent random variables'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי