Computation over APT compressed data

Avivit Levy, Dana Shapira

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The Arithmetic Progressions Tree (APT) is a data structure storing an encoding of a monotonic sequence L in [1.n]. Previous work on APTs focused on its theoretical and experimental compression guarantees. This paper is the first to consider computations over APT compressed data. In particular: 1. We show how to perform a search for any sub-sequence/a set of the monotone sequence L in time proportional to the query sub-sequence length/set size multiplied by the size of the APT compressed representation of L. 2. We show how, given the APT compressed representation of the monotone sequence L, we can find a minimum run-length of L in constant time, a maximum run-length of L in O(logn) time, and all runs of L in constant time plus the output size. 3. We show how, given the APT compressed representation of the monotone sequence L, we can answer whether a consecutive periodic pattern P is represented by an APT-node in O(logn) time and report occurrences of P in L within the processing time of the output size. 4. In addition, we improve the APT construction algorithm time and space complexity.

שפה מקוריתאנגלית
מספר המאמר102504
כתב עתInformation Systems
כרך129
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - מרץ 2025

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Computation over APT compressed data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי