Classifying the valence of autobiographical memories from fMRI data

Alex Frid, Larry M. Manevitz, Norberto Eiji Nawa

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

4 ציטוטים ‏(Scopus)

תקציר

We show that fMRI analysis using machine learning tools are sufficient to distinguish valence (i.e., positive or negative) of freely retrieved autobiographical memories in a cross-participant setting. Our methodology uses feature selection (ReliefF) in combination with boosting methods, both applied directly to data represented in voxel space. In previous work using the same data set, Nawa and Ando showed that whole-brain based classification could achieve above-chance classification accuracy only when both training and testing data came from the same individual. In a cross-participant setting, classification results were not statistically significant. Additionally, on average the classification accuracy obtained when using ReliefF is substantially higher than previous results - 81% for the within-participant classification, and 62% for the cross-participant classification. Furthermore, since features are defined in voxel space, it is possible to show brain maps indicating the regions of that are most relevant in determining the results of the classification. Interestingly, the voxels that were selected using the proposed computational pipeline seem to be consistent with current neurophysiological theories regarding the brain regions actively involved in autobiographical memory processes.

שפה מקוריתאנגלית
עמודים (מ-עד)1261-1274
מספר עמודים14
כתב עתAnnals of Mathematics and Artificial Intelligence
כרך88
מספר גיליון11-12
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 דצמ׳ 2020

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Classifying the valence of autobiographical memories from fMRI data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי