תקציר
For a tree T on n vertices, we study the Maker-Breaker game, played on the edge set of the complete graph on n vertices, which Maker wins as soon as the graph she builds contains a copy of T. We prove that if T has bounded maximum degree and n is sufficiently large, then Maker can win this game within n + 1 moves. Moreover, we prove that Maker can build almost every tree on n vertices in nâ'1 moves and provide nontrivial examples of families of trees which Maker cannot build in n â'1 moves.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 1683-1705 |
מספר עמודים | 23 |
כתב עת | SIAM Journal on Discrete Mathematics |
כרך | 29 |
מספר גיליון | 3 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2015 |
פורסם באופן חיצוני | כן |