Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks

Teddy Lazebnik, Tzach Fleischer, Amit Yaniv-Rosenfeld

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

8 ציטוטים ‏(Scopus)

תקציר

Data-driven economic tasks have gained significant attention in economics, allowing researchers and policymakers to make better decisions and design efficient policies. Recently, with the advancement of machine learning (ML) and other artificial intelligence (AI) methods, researchers can now solve complex economic tasks with previously unseen performance and ease. However, to use such methods, one is required to have a non-trivial level of expertise in ML or AI, which currently is not standard knowledge in economics. In order to bridge this gap, automatic machine learning (AutoML) models have been developed, allowing non-experts to efficiently use advanced ML models with their data. Nonetheless, not all AutoML models are created equal in general, particularly for the unique properties associated with economic data. In this paper, we present a benchmarking study of biologically inspired and other AutoML techniques for economic tasks. We evaluate four different AutoML models alongside two baseline methods using a set of 50 diverse economic tasks. Our results show that biologically inspired AutoML models (slightly) outperformed non-biological AutoML in economic tasks, while all AutoML models outperformed the traditional methods. Based on our results, we conclude that biologically inspired AutoML has the potential to improve our economic understanding while shifting a large portion of the analysis burden from the economist to a computer.

שפה מקוריתאנגלית
מספר המאמר11232
כתב עתSustainability (Switzerland)
כרך15
מספר גיליון14
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יולי 2023
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי