Back-Analysis of Structurally Controlled Failure in an Open-Pit Mine with Machine Learning Tools

Alison McQuillan, Amichai Mitelman, Davide Elmo

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

2 ציטוטים ‏(Scopus)

תקציר

Over the past decades, numerical modelling has become a powerful tool for rock mechanics applications. However, the accurate estimation of rock mass input parameters remains a significant challenge. Machine learning (ML) tools have recently been integrated to enhance and accelerate numerical modelling processes. In this paper, we demonstrate the novel use of ML tools for calibrating a state-of-the-art three-dimensional (3D) finite-element (FE) model of a kinematic structurally controlled failure event in an open-pit mine. The failure event involves the detachment of a large wedge, thus allowing for the accurate identification of the geometry of the rock joints. FE models are automatically generated according to estimated ranges of joint input parameters. Subsequently, ML tools are used to analyze the synthetic data and calibrate the strength parameters of the rock joints. Our findings reveal that a relatively small number of models are needed for this purpose, rendering ML a highly useful tool even for computationally demanding FE models.

שפה מקוריתאנגלית
עמודים (מ-עד)1207-1218
מספר עמודים12
כתב עתGeotechnics
כרך3
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - דצמ׳ 2023

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Back-Analysis of Structurally Controlled Failure in an Open-Pit Mine with Machine Learning Tools'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי