Automorphic forms on PGSp(2)

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

5 ציטוטים ‏(Scopus)

תקציר

The theory of lifting of automorphic and admissible representations is developed in a new case of great classical interest: Siegel automorphic forms. The self-contragredient representations of PGL(4) are determined as lifts of representations of either symplectic PGSp(2) or orthogonal SO(4) rank two split groups. Our approach to the lifting uses the global tool of the trace formula together with local results such as the fundamental lemma. The lifting is stated in terms of character relations. This permits us to introduce a definition of packets and quasi-packets of representations of the projective symplectic group of similitudes PGSp(2), and analyse the structure of all packets. All representations, not only generic or tempered ones, are studied. Globally we obtain a multiplicity one theorem for the discrete spectrum of the projective symplectic group PGSp(2), a rigidity theorem for packets and quasi-packets, determine all counterexamples to the naive Ramanujan conjecture, and compute the multiplicity of each member in a packet or quasi-packet in the discrete spectrum. The lifting from SO(4) to PGL(4) amounts to establishing a product of two representations of GL(2) with central characters whose product is 1. The rigidity theorem for SO(4) amounts to a strong rigidity statement for a pair of representations of GL(2; A).

שפה מקוריתאנגלית
עמודים (מ-עד)39-50
מספר עמודים12
כתב עתElectronic Research Announcements of the American Mathematical Society
כרך10
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 23 אפר׳ 2004
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Automorphic forms on PGSp(2)'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי