Assignment of a Synthetic Population for Activity-Based Modeling Employing Publicly Available Data

Serio Agriesti, Claudio Roncoli, Bat Hen Nahmias-Biran

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

14 ציטוטים ‏(Scopus)

תקציר

Agent-based modeling has the potential to deal with the ever-growing complexity of transport systems, including future disrupting mobility technologies and services, such as automated driving, Mobility as a Service, and micromobility. Although different software dedicated to the simulation of disaggregate travel demand have emerged, the amount of needed input data, in particular the characteristics of a synthetic population, is large and not commonly available, due to legit privacy concerns. In this paper, a methodology to spatially assign a synthetic population by exploiting only publicly available aggregate data is proposed, providing a systematic approach for an efficient treatment of the data needed for activity-based demand generation. The assignment of workplaces exploits aggregate statistics for economic activities and land use classifications to properly frame origins and destination dynamics. The methodology is validated in a case study for the city of Tallinn, Estonia, and the results show that, even with very limited data, the assignment produces reliable results up to a 500 × 500 m resolution, with an error at district level generally around 5%. Both the tools needed for spatial assignment and the resulting dataset are available as open source, so that they may be exploited by fellow researchers.

שפה מקוריתאנגלית
מספר המאמר148
כתב עתISPRS International Journal of Geo-Information
כרך11
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - פבר׳ 2022

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Assignment of a Synthetic Population for Activity-Based Modeling Employing Publicly Available Data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי