AGT basis in SCFT for c = 3/2 and Uglov polynomials

Vladimir Belavin, Abay Zhakenov

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

AGT allows one to compute conformal blocks of d = 2 CFT for a large class of chiral CFT algebras. This is related to the existence of a certain orthogonal basis in the module of the (extended) chiral algebra. The elements of the basis are eigenvectors of a certain integrable model, labeled in general by N-tuples of Young diagrams. In particular, it was found that in the Virasoro case these vectors are expressed in terms of Jack polynomials, labeled by 2-tuples of ordinary Young diagrams, and for the super-Virasoro case they are related to Uglov polynomials, labeled by two colored Young diagrams. In the case of a generic central charge this statement was checked in the case when one of the Young diagrams is empty. In this note we study the N = 1 SCFT and construct 4 point correlation function using the basis. To this end we need to clarify the connection between basis elements and Uglov polynomials, we also need to use two bosonizations and their connection to the reflection operator. For the central charge c=3/2 we checked that there is a connection with the Uglov polynomials for the whole set of diagrams.

שפה מקוריתאנגלית
מספר המאמר115133
כתב עתNuclear Physics B
כרך958
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ספט׳ 2020

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'AGT basis in SCFT for c = 3/2 and Uglov polynomials'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי