Ad hoc teamwork with behavior switching agents

Manish Ravula, Shani Alkoby, Peter Stone

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

23 ציטוטים ‏(Scopus)

תקציר

As autonomous AI agents proliferate in the real world, they will increasingly need to cooperate with each other to achieve complex goals without always being able to coordinate in advance. This kind of cooperation, in which agents have to learn to cooperate on the fly, is called ad hoc teamwork. Many previous works investigating this setting assumed that teammates behave according to one of many predefined types that is fixed throughout the task. This assumption of stationarity in behaviors, is a strong assumption which cannot be guaranteed in many real-world settings. In this work, we relax this assumption and investigate settings in which teammates can change their types during the course of the task. This adds complexity to the planning problem as now an agent needs to recognize that a change has occurred in addition to figuring out what is the new type of the teammate it is interacting with. In this paper, we present a novel Convolutional-Neural-Network-based Change Point Detection (CPD) algorithm for ad hoc teamwork. When evaluating our algorithm on the modified predator prey domain, we find that it outperforms existing Bayesian CPD algorithms.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
עורכיםSarit Kraus
עמודים550-556
מספר עמודים7
מסת"ב (אלקטרוני)9780999241141
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2019
פורסם באופן חיצוניכן
אירוע28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, סין
משך הזמן: 10 אוג׳ 201916 אוג׳ 2019

סדרות פרסומים

שםIJCAI International Joint Conference on Artificial Intelligence
כרך2019-August
ISSN (מודפס)1045-0823

כנס

כנס28th International Joint Conference on Artificial Intelligence, IJCAI 2019
מדינה/אזורסין
עירMacao
תקופה10/08/1916/08/19

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Ad hoc teamwork with behavior switching agents'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי