Accelerated partial decoding in wavelet trees

Gilad Baruch, Shmuel T. Klein, Dana Shapira

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

3 ציטוטים ‏(Scopus)

תקציר

A Wavelet Tree is a compact data structure which is used in order to perform various well defined operations directly on the compressed form of a file. As random access is one of these operations, the underlying file is not needed anymore, and is often discarded because it can be restored, when necessary, by repeated accesses. This paper concentrates on cases in which partial decoding of a contiguous portion of the file, or even its full decoding, is still needed. We show how to accelerate the decoding relative to repeatedly performing random accesses on the consecutive indices. Experiments on partial and full decoding support the effectiveness of our approach, and present an improvement of about 50% of the run-time for full decoding, and about 30% or more for partial decoding of large enough ranges.

שפה מקוריתאנגלית
עמודים (מ-עד)2-10
מספר עמודים9
כתב עתDiscrete Applied Mathematics
כרך274
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 15 מרץ 2020

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Accelerated partial decoding in wavelet trees'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי