A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates

Joël Chaskalovic, Franck Assous

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor's formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at n+1 equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.

שפה מקוריתאנגלית
מספר המאמר116274
כתב עתJournal of Computational and Applied Mathematics
כרך457
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 15 מרץ 2025

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי