A new lower bound on Hadwiger-Debrunner numbers in the plane

Chaya Keller, Shakhar Smorodinsky

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

1 ציטוט ‏(Scopus)

תקציר

A family of sets F is said to satisfy the (p, q) property if among any p sets in F some q have a non-empty intersection. Hadwiger and Debrunner (1957) conjectured that for any p ≥ q ≥ d + 1 there exists an integer c = HDd(p, q), such that any finite family of convex sets in Rd that satisfies the (p, q) property can be pierced by at most c points. In a celebrated result from 1992, Alon and Kleitman proved the conjecture. However, obtaining sharp bounds on HDd(p, q), known as 'the Hadwiger-Debrunner numbers', is still a major open problem in discrete and computational geometry. The best currently known upper bound on the Hadwiger-Debrunner numbers in the plane is O(p(1.5+δ)(1+ q− 1 2)) (for any δ > 0 and p ≥ q ≥ q0(δ)), obtained by combining results of Keller, Smorodinsky, and Tardos (SODA 2017) and of Rubin (FOCS 2018). The best lower bound is HD2(p, q) = Ω(pq log(pq )), obtained by Bukh, Matoušek and Nivasch more than 10 years ago. In this paper we improve the lower bound significantly by showing that HD2(p, q) ≥ p1+Ω(1/q). Furthermore, the bound is obtained by a family of lines and is tight for all families that have a bounded VC-dimension. Unlike previous bounds on the Hadwiger-Debrunner numbers, which mainly used the weak epsilon-net theorem, our bound stems from a surprising connection of the (p, q) problem to an old problem of Erdös on points in general position in the plane. We use a novel construction for Erdös' problem, obtained recently by Balogh and Solymosi using the hypergraph container method, to get the lower bound on HD2(p, 3). We then generalize the bound to HD2(p, q) for q ≥ 3.

שפה מקוריתאנגלית
כותר פרסום המארח31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
עורכיםShuchi Chawla
עמודים1155-1169
מספר עמודים15
מסת"ב (אלקטרוני)9781611975994
סטטוס פרסוםפורסם - 2020
אירוע31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, ארצות הברית
משך הזמן: 5 ינו׳ 20208 ינו׳ 2020

סדרות פרסומים

שםProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
כרך2020-January

כנס

כנס31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
מדינה/אזורארצות הברית
עירSalt Lake City
תקופה5/01/208/01/20

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'A new lower bound on Hadwiger-Debrunner numbers in the plane'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי