TY - JOUR
T1 - Weighted Distance Nearest Neighbor Condensing
AU - Gottlieb, Lee Ad
AU - Sharabi, Timor
AU - Weiss, Roi
N1 - Publisher Copyright:
Copyright 2024 by the author(s)
PY - 2024
Y1 - 2024
N2 - The problem of nearest neighbor condensing has enjoyed a long history of study, both in its theoretical and practical aspects. In this paper, we introduce the problem of weighted distance nearest neighbor condensing, where one assigns weights to each point of the condensed set, and then new points are labeled based on their weighted distance nearest neighbor in the condensed set. We study the theoretical properties of this new model, and show that it can produce dramatically better condensing than the standard nearest neighbor rule, yet is characterized by generalization bounds almost identical to the latter. We then suggest a condensing heuristic for our new problem. We demonstrate Bayes consistency for this heuristic, and also show promising empirical results.
AB - The problem of nearest neighbor condensing has enjoyed a long history of study, both in its theoretical and practical aspects. In this paper, we introduce the problem of weighted distance nearest neighbor condensing, where one assigns weights to each point of the condensed set, and then new points are labeled based on their weighted distance nearest neighbor in the condensed set. We study the theoretical properties of this new model, and show that it can produce dramatically better condensing than the standard nearest neighbor rule, yet is characterized by generalization bounds almost identical to the latter. We then suggest a condensing heuristic for our new problem. We demonstrate Bayes consistency for this heuristic, and also show promising empirical results.
UR - http://www.scopus.com/inward/record.url?scp=85203802111&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85203802111
SN - 2640-3498
VL - 235
SP - 16153
EP - 16166
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 41st International Conference on Machine Learning, ICML 2024
Y2 - 21 July 2024 through 27 July 2024
ER -