TY - JOUR
T1 - Tumor suppressor activity of klotho in breast cancer is revealed by structure-function analysis
AU - Ligumsky, Hagai
AU - Rubinek, Tami
AU - Merenbakh-Lamin, Keren
AU - Yeheskel, Adva
AU - Sertchook, Rotem
AU - Shahmoon, Shiri
AU - Aviel-Ronen, Sarit
AU - Wolf, Ido
N1 - Publisher Copyright:
© 2015 American Association for Cancer Research.
PY - 2015/10
Y1 - 2015/10
N2 - Klotho is a transmembrane protein containing two internal repeats, KL1 and KL2, both displaying significant homology to members of the b-glycosidase family. Klotho is expressed in the kidney, brain, and various endocrine tissues, but can also be cleaved and act as a circulating hormone. Klotho is an essential cofactor for binding of fibroblast growth factor 23 (FGF23) to the FGF receptor and can also inhibit the insulin-like growth factor-1 (IGF-1) pathway. Data from a wide array of malignancies indicate klotho as a tumor suppressor; however, the structure-function relationships governing its tumor suppressor activities have not been deciphered. Here, the tumor suppressor activities of the KL1 and KL2 domains were examined. Over-expression of either klotho or KL1, but not of KL2, inhibited colony formation by MCF-7 and MDA-MB-231 cells. Moreover, in vivo administration of KL1 was not only well tolerated but significantly slowed tumor formation in nude mice. Further studies indicated that KL1, but not KL2, interacted with the IGF-1R and inhibited the IGF-1 pathway. Based on computerized structural modeling, klotho constructs were generated in which critical amino acids have been mutated. Interestingly, the mutated proteins retained their tumor suppressor activity but showed reduced ability to modulate FGF23 signaling. These data indicate differential activity of the klotho domains, KL1 and KL2, in breast cancer and reveal that the tumor suppressor activities of klotho can be dissected from its physiologic activities. Implications: These findings pave the way for a rational design of safe klotho-based molecules for the treatment of breast cancer.
AB - Klotho is a transmembrane protein containing two internal repeats, KL1 and KL2, both displaying significant homology to members of the b-glycosidase family. Klotho is expressed in the kidney, brain, and various endocrine tissues, but can also be cleaved and act as a circulating hormone. Klotho is an essential cofactor for binding of fibroblast growth factor 23 (FGF23) to the FGF receptor and can also inhibit the insulin-like growth factor-1 (IGF-1) pathway. Data from a wide array of malignancies indicate klotho as a tumor suppressor; however, the structure-function relationships governing its tumor suppressor activities have not been deciphered. Here, the tumor suppressor activities of the KL1 and KL2 domains were examined. Over-expression of either klotho or KL1, but not of KL2, inhibited colony formation by MCF-7 and MDA-MB-231 cells. Moreover, in vivo administration of KL1 was not only well tolerated but significantly slowed tumor formation in nude mice. Further studies indicated that KL1, but not KL2, interacted with the IGF-1R and inhibited the IGF-1 pathway. Based on computerized structural modeling, klotho constructs were generated in which critical amino acids have been mutated. Interestingly, the mutated proteins retained their tumor suppressor activity but showed reduced ability to modulate FGF23 signaling. These data indicate differential activity of the klotho domains, KL1 and KL2, in breast cancer and reveal that the tumor suppressor activities of klotho can be dissected from its physiologic activities. Implications: These findings pave the way for a rational design of safe klotho-based molecules for the treatment of breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=84945279345&partnerID=8YFLogxK
U2 - 10.1158/1541-7786.MCR-15-0141
DO - 10.1158/1541-7786.MCR-15-0141
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26113466
AN - SCOPUS:84945279345
SN - 1541-7786
VL - 13
SP - 1398
EP - 1407
JO - Molecular Cancer Research
JF - Molecular Cancer Research
IS - 10
ER -