Thermomechanical coupling effects on the dynamic inelastic response and buckling of metal matrix composite infinitely wide plates

Rivka Gilat, Jacob Aboudi

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

A micromechanical approach is combined with a structural analysis in order to investigate the coupled thermomechanical dynamic behavior of infinitely wide plates composed of an elastic-viscoplastic matrix reinforced by elastic fibers. The micromechanical analysis relies on the thermoelastic and inelastic properties of the constituents of the composite, and provides instantaneous effective thermoviscoplastic relations for the metal matrix composite at any point of the structure. The structural analysis consists of mechanical and energy equations both of which involve thermal and mechanical coupling terms. These coupled governing equations are based on classical and higher order plate theories, and are solved by employing a spatial finite difference and temporal Runge-Kutta integrations. Results are given that illustrate the effects of the thermomechanical coupling and the viscoplastic energy dissipation on the dynamic response and buckling of metal matrix composite plates.

Original languageEnglish
Pages (from-to)49-63
Number of pages15
JournalComposite Structures
Volume35
Issue number1
DOIs
StatePublished - May 1996
Externally publishedYes

Fingerprint

Dive into the research topics of 'Thermomechanical coupling effects on the dynamic inelastic response and buckling of metal matrix composite infinitely wide plates'. Together they form a unique fingerprint.

Cite this