TY - JOUR
T1 - The multi-level pattern memory test (MPMT)
T2 - Initial validation of a novel performance validity test
AU - Omer, Elad
AU - Braw, Yoram
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8
Y1 - 2021/8
N2 - Performance validity tests (PVTs) are used for the detection of noncredible performance in neuropsychological assessments. The aim of the study was to assess the efficacy (i.e., discrimination capacity) of a novel PVT, the Multi-Level Pattern Memory Test (MPMT). It includes stages that allow profile analysis (i.e., detecting noncredible performance based on an analysis of participants’ performance across stages) and minimizes the likelihood that it would be perceived as a PVT by examinees. In addition, it utilizes nonverbal stimuli and is therefore more likely to be cross-culturally valid. In Experiment 1, participants that were instructed to simulate cognitive impairment performed less accurately than honest controls in the MPMT (n = 67). Importantly, the MPMT has shown an adequate discrimination capacity, though somewhat lower than an established PVT (i.e., Test of Memory Malingering—TOMM). Experiment 2 (n = 77) validated the findings of the first experiment while also indicating a dissociation between the simulators’ objective performance and their perceived cognitive load while performing the MPMT. The MPMT and the profile analysis based on its outcome measures show initial promise in detecting noncredible performance. It may, therefore, increase the range of available PVTs at the disposal of clinicians, though further validation in clinical settings is mandated. The fact that it is an open-source software will hopefully also encourage the development of research programs aimed at clarifying the cognitive processes involved in noncredible performance and the impact of PVT characteristics on clinical utility.
AB - Performance validity tests (PVTs) are used for the detection of noncredible performance in neuropsychological assessments. The aim of the study was to assess the efficacy (i.e., discrimination capacity) of a novel PVT, the Multi-Level Pattern Memory Test (MPMT). It includes stages that allow profile analysis (i.e., detecting noncredible performance based on an analysis of participants’ performance across stages) and minimizes the likelihood that it would be perceived as a PVT by examinees. In addition, it utilizes nonverbal stimuli and is therefore more likely to be cross-culturally valid. In Experiment 1, participants that were instructed to simulate cognitive impairment performed less accurately than honest controls in the MPMT (n = 67). Importantly, the MPMT has shown an adequate discrimination capacity, though somewhat lower than an established PVT (i.e., Test of Memory Malingering—TOMM). Experiment 2 (n = 77) validated the findings of the first experiment while also indicating a dissociation between the simulators’ objective performance and their perceived cognitive load while performing the MPMT. The MPMT and the profile analysis based on its outcome measures show initial promise in detecting noncredible performance. It may, therefore, increase the range of available PVTs at the disposal of clinicians, though further validation in clinical settings is mandated. The fact that it is an open-source software will hopefully also encourage the development of research programs aimed at clarifying the cognitive processes involved in noncredible performance and the impact of PVT characteristics on clinical utility.
KW - Cognitive load
KW - Feigned cognitive impairment
KW - Forced-choice recognition memory
KW - Performance validity test (PVT)
KW - Test of Memory Malingering (TOMM)
UR - http://www.scopus.com/inward/record.url?scp=85112469357&partnerID=8YFLogxK
U2 - 10.3390/brainsci11081039
DO - 10.3390/brainsci11081039
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85112469357
SN - 2076-3425
VL - 11
JO - Brain Sciences
JF - Brain Sciences
IS - 8
M1 - 1039
ER -