Abstract
We recently identified intersectin, a protein containing two EH and five SH3 domains, as a component of the endocytic machinery. The N-terminal SH3 domain (SH3A), unlike other SH3 domains from intersectin or various endocytic proteins, specifically inhibits intermediate events leading to the formation of clathrin-coated pits. We have now identified a brain-enriched, 170 kDa protein (p170) that interacts specifically with SH3A. Screening of combinatorial peptides reveals the optimal ligand for SH3A as Pp(V/I)PPR, and the 170 kDa mammalian son-of-sevenless (mSos1) protein, a guanine-nucleotide exchange factor for Ras, contains two copies of the matching sequence, PPVPPR. Immunodepletion studies confirm that p170 is mSos1. Intersectin and mSos1 are co-enriched in nerve terminals and are co-immunoprecipitated from brain extracts. SH3A competes with the SH3 domains of Grb2 in binding to mSos1, and the intersectin-mSos1 complex can be separated from Grb2 by sucrose gradient centrifugation. Overexpression of the SH3 domains of intersectin blocks epidermal growth factor-mediated Ras activation. These results suggest that intersectin functions in cell signaling in addition to its role in endocytosis and may link these cellular processes.
Original language | English |
---|---|
Pages (from-to) | 1263-1271 |
Number of pages | 9 |
Journal | EMBO Journal |
Volume | 19 |
Issue number | 6 |
DOIs | |
State | Published - 15 Mar 2000 |
Externally published | Yes |
Keywords
- Clathrin
- EH domain
- Endocytosis
- Ras
- SH3 domain