TY - JOUR
T1 - Summand absorbing submodules of a module over a semiring
AU - Izhakian, Zur
AU - Knebusch, Manfred
AU - Rowen, Louis
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/8
Y1 - 2019/8
N2 - An R-module V over a semiring R lacks zero sums (LZS) if x+y=0 implies x=y=0. More generally, we call a submodule W of V “summand absorbing” (SA) in V if ∀x,y∈V:x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings, as well as modules over semirings of sums of squares. We explore the lattice of finite sums of SA-submodules, obtaining analogs of the Jordan–Hölder theorem, the noetherian theory, and the lattice-theoretic Krull dimension. We pay special attention to finitely generated SA-submodules, and describe their explicit generation.
AB - An R-module V over a semiring R lacks zero sums (LZS) if x+y=0 implies x=y=0. More generally, we call a submodule W of V “summand absorbing” (SA) in V if ∀x,y∈V:x+y∈W⇒x∈W,y∈W. These arise in tropical algebra and modules over idempotent semirings, as well as modules over semirings of sums of squares. We explore the lattice of finite sums of SA-submodules, obtaining analogs of the Jordan–Hölder theorem, the noetherian theory, and the lattice-theoretic Krull dimension. We pay special attention to finitely generated SA-submodules, and describe their explicit generation.
KW - Direct sum decomposition
KW - Indecomposable
KW - Lacking zero sums
KW - Projective (semi)module
KW - Semiring
KW - Upper bound monoid
UR - http://www.scopus.com/inward/record.url?scp=85056831608&partnerID=8YFLogxK
U2 - 10.1016/j.jpaa.2018.11.001
DO - 10.1016/j.jpaa.2018.11.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85056831608
SN - 0022-4049
VL - 223
SP - 3262
EP - 3294
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
IS - 8
ER -