Sub g threshold acceleration sensor incorporating latched bistable beam

Lior Medina, Rivka Gilat, Slava Krylov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We present a concept and a theoretical feasibility study of a sub g threshold inertial micro sensor, which incorporates a curved bistable beam as a suspension element. For certain range of geometric parameters such a beam can exhibit lathing, namely remain in its switched configuration at zero actuating force. Since the device can be released from its latched state by an external acceleration force, it can therefore serve as a threshold inertial switch. While the snap-through force, associated with the switching from the initial to the buckled state, cannot be reduced without decreasing the frequency of the device, the release value of the acceleration can be tailored to be arbitrarily low. This allows design of a devices with sufficiently high stiffness in the initial and latched configurations, but with a very low release threshold. Our model show that for appropriately chosen parameters, it is possible to design a sub g threshold acceleration micro switch of realistic dimensions.

Original languageEnglish
Title of host publication23rd Design for Manufacturing and the Life Cycle Conference; 12th International Conference on Micro- and Nanosystems
ISBN (Electronic)9780791851791
DOIs
StatePublished - 2018
EventASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018 - Quebec City, Canada
Duration: 26 Aug 201829 Aug 2018

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume4

Conference

ConferenceASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2018
Country/TerritoryCanada
CityQuebec City
Period26/08/1829/08/18

Fingerprint

Dive into the research topics of 'Sub g threshold acceleration sensor incorporating latched bistable beam'. Together they form a unique fingerprint.

Cite this