TY - GEN
T1 - Strongly budget balanced auctions for multi-sided markets
AU - Gonen, Rica
AU - Segal-Halevi, Erel
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - In two-sided markets, Myerson and Satterthwaite's impossibility theorem states that one can not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite's result by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee (1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has no surplus - it is strongly-budget-balanced. They consider two categories of agents - buyers and sellers, where each trade set is composed of a single buyer and a single seller. The practical complexity of applications such as supply chain require one to look beyond two-sided markets. Common requirements are for: buyers trading with multiple sellers of different or identical items, buyers trading with sellers through transporters and mediators, and sellers trading with multiple buyers. We attempt to address these settings. We generalize Segal-Halevi et al. (2016)'s strongly-budget-balanced double-sided auction setting to a multilateral market where each trade set is composed of any number of agent categories. Our generalization refines the notion of competition in multi-sided auctions by introducing the concepts of external competition and trade reduction. We also show an obviously-truthful implementation of our auction using multiple ascending prices. Full version, including omitted proofs and simulation experiments, is available at https://arxiv.org/abs/1911.08094.
AB - In two-sided markets, Myerson and Satterthwaite's impossibility theorem states that one can not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite's result by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee (1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has no surplus - it is strongly-budget-balanced. They consider two categories of agents - buyers and sellers, where each trade set is composed of a single buyer and a single seller. The practical complexity of applications such as supply chain require one to look beyond two-sided markets. Common requirements are for: buyers trading with multiple sellers of different or identical items, buyers trading with sellers through transporters and mediators, and sellers trading with multiple buyers. We attempt to address these settings. We generalize Segal-Halevi et al. (2016)'s strongly-budget-balanced double-sided auction setting to a multilateral market where each trade set is composed of any number of agent categories. Our generalization refines the notion of competition in multi-sided auctions by introducing the concepts of external competition and trade reduction. We also show an obviously-truthful implementation of our auction using multiple ascending prices. Full version, including omitted proofs and simulation experiments, is available at https://arxiv.org/abs/1911.08094.
UR - http://www.scopus.com/inward/record.url?scp=85099876923&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85099876923
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 1998
EP - 2005
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -