TY - GEN
T1 - Strategy-proof and efficient kidney exchange using a credit mechanism
AU - Hajaj, Chen
AU - Dickerson, John P.
AU - Hassidim, Avinatan
AU - Sandhotm, Tuomas
AU - Sarne, David
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - We present a credit-based matching mechanism for dynamic barter markets-and kidney exchange in particular-that is both strategy proof and efficient, that is, it guarantees truthful disclosure of donor-patient pairs from the transplant centers and results in the maximum global matching. Furthermore, the mechanism is individually rational in the sense that, in the long run, it guarantees each transplant center more matches than the center could have achieved alone. The mechanism does not require assumptions about the underlying distribution of compatibility graphs-a nuance that has previously produced conflicting results in other aspects of theoretical kidney exchange. Our results apply not only to matching via 2-cycles: the matchings can also include cycles of any length and altruist-initiated chains, which is important at least in kidney exchanges. The mechanism can also be adjusted to guarantee immediate individual rationality at the expense of economic efficiency, while preserving strategy proofness via the credits. This circumvents a well-known impossibility result in static kidney exchange concerning the existence of an individually rational, strategy-proof, and maximal mechanism. We show empirically that the mechanism results in significant gains on data from a national kidney exchange that includes 59% of all US transplant centers.
AB - We present a credit-based matching mechanism for dynamic barter markets-and kidney exchange in particular-that is both strategy proof and efficient, that is, it guarantees truthful disclosure of donor-patient pairs from the transplant centers and results in the maximum global matching. Furthermore, the mechanism is individually rational in the sense that, in the long run, it guarantees each transplant center more matches than the center could have achieved alone. The mechanism does not require assumptions about the underlying distribution of compatibility graphs-a nuance that has previously produced conflicting results in other aspects of theoretical kidney exchange. Our results apply not only to matching via 2-cycles: the matchings can also include cycles of any length and altruist-initiated chains, which is important at least in kidney exchanges. The mechanism can also be adjusted to guarantee immediate individual rationality at the expense of economic efficiency, while preserving strategy proofness via the credits. This circumvents a well-known impossibility result in static kidney exchange concerning the existence of an individually rational, strategy-proof, and maximal mechanism. We show empirically that the mechanism results in significant gains on data from a national kidney exchange that includes 59% of all US transplant centers.
UR - http://www.scopus.com/inward/record.url?scp=84959862662&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84959862662
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 921
EP - 928
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -