Signaling to transcription networks in the neuronal retrograde injury response

Izhak Michaelevski, Yael Segal-Ruder, Meir Rozenbaum, Katalin F. Medzihradszky, Ophir Shalem, Giovanni Coppola, Shirley Horn-Saban, Keren Ben-Yaakov, Shachar Y. Dagan, Ida Rishal, Daniel H. Geschwind, Yitzhak Pilpel, Alma L. Burlingame, Mike Fainzilber

Research output: Contribution to journalArticlepeer-review

161 Scopus citations

Abstract

Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate ∼900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and ∼4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified ∼400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response.

Original languageEnglish
Pages (from-to)ra53
JournalScience Signaling
Volume3
Issue number130
DOIs
StatePublished - 13 Jul 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Signaling to transcription networks in the neuronal retrograde injury response'. Together they form a unique fingerprint.

Cite this