TY - JOUR
T1 - Rivaroxaban significantly inhibits the stimulatory effects of bone-modulating hormones
T2 - In vitro study of primary female osteoblasts
AU - Somjen, Dalia
AU - Sharfman, Zachary T.
AU - Katzburg, Sara
AU - Sharon, Orli
AU - Maman, Eran
AU - Salai, Moshe
AU - Stern, Naftali
AU - Dolkart, Oleg
N1 - Publisher Copyright:
© 2017 Taylor & Francis.
PY - 2017/3/4
Y1 - 2017/3/4
N2 - Background: Anticoagulant therapy is a mainstay of treatment subsequent to major orthopedic surgeries. Evidence linking anticoagulant therapy, osteoporosis, and delayed fracture healing is not conclusive. We have previously reported that rivaroxaban significantly inhibited cell growth and energy metabolism in a human osteoblastic cell line. This study analyzed the response of primary female osteoblast cells to rivaroxaban in combination with various bone-modulating hormones. Methods: Bone samples were taken from both premenopausal (pre-Ob) and postmenopausal (post-Ob) women. Cells were isolated from each sample and cultured to sub-confluence. Each sample was then treated with Rivaroxaban (10 µg/ml) in combination with the following hormones or with the hormones alone for 24 hours: 30nM estradiol-17β (E2), 390nM estrogen receptor α (ERα) agonist PPT, 420nM estrogen receptor β (ERβ) agonist DPN, 50nM parathyroid hormone (PTH), and 1nM of vitamin D analog JKF. Results: No effects were observed after exposure to rivaroxaban alone. When pre-Ob and post-Ob cells were exposed to the bone-modulating hormones as a control experiment, DNA synthesis and creatine kinase (CK)-specific activity was significantly stimulated with a greater response in the pre-Ob cells. When the cells were exposed to rivaroxaban in combination with bone-modulating hormones, the increased DNA synthesis and CK-specific activity previously observed were completely attenuated. Conclusions: Rivaroxaban significantly inhibited the stimulatory effects of bone-modulating hormones in both pre-Ob and post-Ob primary human cell lines. This finding may have clinical relevance for patients at high risk of osteoporosis managed with rivaroxaban or other factor Xa inhibitors.
AB - Background: Anticoagulant therapy is a mainstay of treatment subsequent to major orthopedic surgeries. Evidence linking anticoagulant therapy, osteoporosis, and delayed fracture healing is not conclusive. We have previously reported that rivaroxaban significantly inhibited cell growth and energy metabolism in a human osteoblastic cell line. This study analyzed the response of primary female osteoblast cells to rivaroxaban in combination with various bone-modulating hormones. Methods: Bone samples were taken from both premenopausal (pre-Ob) and postmenopausal (post-Ob) women. Cells were isolated from each sample and cultured to sub-confluence. Each sample was then treated with Rivaroxaban (10 µg/ml) in combination with the following hormones or with the hormones alone for 24 hours: 30nM estradiol-17β (E2), 390nM estrogen receptor α (ERα) agonist PPT, 420nM estrogen receptor β (ERβ) agonist DPN, 50nM parathyroid hormone (PTH), and 1nM of vitamin D analog JKF. Results: No effects were observed after exposure to rivaroxaban alone. When pre-Ob and post-Ob cells were exposed to the bone-modulating hormones as a control experiment, DNA synthesis and creatine kinase (CK)-specific activity was significantly stimulated with a greater response in the pre-Ob cells. When the cells were exposed to rivaroxaban in combination with bone-modulating hormones, the increased DNA synthesis and CK-specific activity previously observed were completely attenuated. Conclusions: Rivaroxaban significantly inhibited the stimulatory effects of bone-modulating hormones in both pre-Ob and post-Ob primary human cell lines. This finding may have clinical relevance for patients at high risk of osteoporosis managed with rivaroxaban or other factor Xa inhibitors.
KW - Calciotrophic hormones
KW - cell proliferation
KW - energy metabolism
KW - estrogens
KW - human female osteoblasts
KW - rivaroxaban
UR - http://www.scopus.com/inward/record.url?scp=84988568654&partnerID=8YFLogxK
U2 - 10.1080/03008207.2016.1220942
DO - 10.1080/03008207.2016.1220942
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 27661794
AN - SCOPUS:84988568654
SN - 0300-8207
VL - 58
SP - 215
EP - 220
JO - Connective Tissue Research
JF - Connective Tissue Research
IS - 2
ER -