TY - GEN
T1 - Risk of rupture in AAA and vulnerable plaques - Patient based FSI simulations
AU - Bluestein, Danny
AU - Alemu, Yared
AU - Rissland, Peter
AU - Britan, Mikahil
AU - Avrahami, Idit
AU - Einav, Shmuel
AU - Ricotta, John
PY - 2007
Y1 - 2007
N2 - Two separate fluid structure interaction (FSI) simulations were performed: a patient-specific Abdominal Aortic Aneurysm (AAA) geometry, and an idealized coronary vulnerable plaque (VP) geometry. VP FSI simulations were later performed in patient based geometries reconstructed from intravascular (IVUS) measurements. (AAA): The patient specific AAA FSI simulation was carried out with both isotropic and anisotropic wall properties. An orthotropic material model was used to describe wall properties, closely approximate experimental results [1]. Results show peak wall stresses are dependent on the geometry of the AAA and the region of highest stress corresponds to expected failure location. The ability to quantify stresses developing within the aneurysm wall based on FSI simulations will facilitate clinicians to reach informed decisions in determining rupture risk of AAA and the need for surgical intervention. (Vulnerable Plaque): To study the risk of rupture of a vulnerable plaque in an idealized coronary artery geometry, an FSI simulation was performed. This model of vulnerable plaque includes vessel wall with calcification spot embedded in the fibrous cap, and a lipid core. Identifying rupture risk, regions susceptible to failure and the contribution of the various components were studied. This work led to predicting the rupture risk in patient specific geometries. The results show the upstream side of vulnerable plaque fibrous cap has the highest stresses. The presence of the calcified spot is shown to enhance stresses within the fibrous cap, significantly contributing to its risk of rupture.
AB - Two separate fluid structure interaction (FSI) simulations were performed: a patient-specific Abdominal Aortic Aneurysm (AAA) geometry, and an idealized coronary vulnerable plaque (VP) geometry. VP FSI simulations were later performed in patient based geometries reconstructed from intravascular (IVUS) measurements. (AAA): The patient specific AAA FSI simulation was carried out with both isotropic and anisotropic wall properties. An orthotropic material model was used to describe wall properties, closely approximate experimental results [1]. Results show peak wall stresses are dependent on the geometry of the AAA and the region of highest stress corresponds to expected failure location. The ability to quantify stresses developing within the aneurysm wall based on FSI simulations will facilitate clinicians to reach informed decisions in determining rupture risk of AAA and the need for surgical intervention. (Vulnerable Plaque): To study the risk of rupture of a vulnerable plaque in an idealized coronary artery geometry, an FSI simulation was performed. This model of vulnerable plaque includes vessel wall with calcification spot embedded in the fibrous cap, and a lipid core. Identifying rupture risk, regions susceptible to failure and the contribution of the various components were studied. This work led to predicting the rupture risk in patient specific geometries. The results show the upstream side of vulnerable plaque fibrous cap has the highest stresses. The presence of the calcified spot is shown to enhance stresses within the fibrous cap, significantly contributing to its risk of rupture.
UR - http://www.scopus.com/inward/record.url?scp=40449101208&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:40449101208
SN - 0791847985
SN - 9780791847985
T3 - Proceedings of the ASME Summer Bioengineering Conference 2007, SBC 2007
SP - 533
EP - 534
BT - Proceedings of the ASME Summer Bioengineering Conference 2007, SBC 2007
T2 - 2007 ASME Summer Bioengineering Conference, SBC 2007
Y2 - 20 June 2007 through 24 June 2007
ER -