Restoring the biophysical properties of decellularized patches through recellularization

Gigi Chi Ting Au-Yeung, Udi Sarig, Hadar Sarig, Hanumakumar Bogireddi, Tomer Bronshtein, Limor Baruch, Avihai Spizzichino, Jacob Bortman, Freddy Yin Chiang Boey, Marcelle Machluf, Subbu S. Venkatraman

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM - previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.

Original languageEnglish
Pages (from-to)1183-1194
Number of pages12
JournalBiomaterials Science
Volume5
Issue number6
DOIs
StatePublished - Jun 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Restoring the biophysical properties of decellularized patches through recellularization'. Together they form a unique fingerprint.

Cite this