TY - JOUR
T1 - Recent Advancements in the Understanding of the Surface Chemistry in TiO2 Photocatalysis
AU - Vorontsov, Alexander V.
AU - Valdés, Héctor
AU - Smirniotis, Panagiotis G.
AU - Paz, Yaron
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/3
Y1 - 2020/3
N2 - Surface chemistry plays a major role in photocatalytic and photoelectrochemical processes taking place with the participation of TiO2. The synthesis methods, surface characterizations, theoretical research methods, and hardware over the last decade generated opportunities for progress in the surface science of this photocatalyst. Very recently, attention was paid to the design of photocatalysts at the nanoscale level by adjusting the types of exposed surfaces and their ratio, the composition and the surface structure of nanoparticles, and that of individual surfaces. The current theoretical methods provide highly detailed designs that can be embodied experimentally. The present review article describes the progress in the surface science of TiO2 and TiO2-based photocatalysts obtained over the last three years. Such aspects including the properties of macro- and nano-scale surfaces, noble-metal-loaded surfaces, doping with Mg and S, intrinsic defects (oxygen vacancies), adsorption, and photoreactions are considered. The main focus of the article is on the anatase phase of TiO2.
AB - Surface chemistry plays a major role in photocatalytic and photoelectrochemical processes taking place with the participation of TiO2. The synthesis methods, surface characterizations, theoretical research methods, and hardware over the last decade generated opportunities for progress in the surface science of this photocatalyst. Very recently, attention was paid to the design of photocatalysts at the nanoscale level by adjusting the types of exposed surfaces and their ratio, the composition and the surface structure of nanoparticles, and that of individual surfaces. The current theoretical methods provide highly detailed designs that can be embodied experimentally. The present review article describes the progress in the surface science of TiO2 and TiO2-based photocatalysts obtained over the last three years. Such aspects including the properties of macro- and nano-scale surfaces, noble-metal-loaded surfaces, doping with Mg and S, intrinsic defects (oxygen vacancies), adsorption, and photoreactions are considered. The main focus of the article is on the anatase phase of TiO2.
KW - adsorption
KW - anatase surfaces
KW - aspect ratio
KW - doping
KW - metal loading
KW - nanosheets
KW - oxygen vacancies
KW - photoreactions
KW - surface heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=85103903760&partnerID=8YFLogxK
U2 - 10.3390/surfaces3010008
DO - 10.3390/surfaces3010008
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85103903760
SN - 2571-9637
VL - 3
SP - 72
EP - 92
JO - Surfaces
JF - Surfaces
IS - 1
ER -