Privacy Preserving DCOP Solving by Mediation

Pablo Kogan, Tamir Tassa, Tal Grinshpoun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In this study we propose a new paradigm for solving DCOPs, whereby the agents delegate the computational task to a set of external mediators who perform the computations for them in an oblivious manner, without getting access neither to the problem inputs nor to its outputs. Specifically, we propose MD-Max-Sum, a mediated implementation of the Max-Sum algorithm. MD-Max-Sum offers topology, constraint, and decision privacy, as well as partial agent privacy. Moreover, MD-Max-Sum is collusion-secure, as long as the set of mediators has an honest majority. We evaluate the performance of MD-Max-Sum on different benchmarks. In particular, we compare its performance to PC-SyncBB, the only privacy-preserving DCOP algorithm to date that is collusion-secure, and show the significant advantages of MD-Max-Sum in terms of runtime.

Original languageEnglish
Title of host publicationCyber Security, Cryptology, and Machine Learning - 6th International Symposium, CSCML 2022, Proceedings
EditorsShlomi Dolev, Amnon Meisels, Jonathan Katz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages487-498
Number of pages12
ISBN (Print)9783031076886
DOIs
StatePublished - 2022
Event6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022 - Beer Sheva, Israel
Duration: 30 Jun 20221 Jul 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13301 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022
Country/TerritoryIsrael
CityBeer Sheva
Period30/06/221/07/22

Keywords

  • DCOP
  • Max-Sum
  • Mediated computing
  • Multiparty computation
  • Privacy

Fingerprint

Dive into the research topics of 'Privacy Preserving DCOP Solving by Mediation'. Together they form a unique fingerprint.

Cite this