TY - JOUR
T1 - Pretranslational mechanisms determine the type of potassium channels expressed in the rat skeletal and cardiac muscles
AU - Matsubara, Hiroaki
AU - Liman, Emily R.
AU - Hess, Peter
AU - Koren, Gideon
PY - 1991
Y1 - 1991
N2 - We have cloned a cDNA (RMK2) coding for a Shaker type delayed rectifier K+ channel from a rat skeletal muscle cDNA library. The clone encodes a putative protein of 602 amino acids, identical with a rat brain K+ channel Kv1 (Swanson, R., Marshall, R., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luneau, C. J., Antanavage, J., Oliva, C., Burhow, S. A., Bennet, C., Stein, R. B., and Kaczmarek, L. K. (1990) Neuron 4, 929-939). Northern blot analysis showed that RMK2 is expressed in skeletal and cardiac muscle. RNase protection analysis showed that the 3′-noncoding regions of the brain, cardiac, and skeletal muscle RMK2 transcripts are identical. Cloning of the gene confirmed that the protein is encoded by a single exon (Swanson et al. (1990) Neuron 4, 929-939). We expressed RMK2 in Xenopus oocytes and showed that it encodes noninactivating delayed rectifier K+ channels, resistant to block by external tetraethylammonium, with a small unitary conductance of 8.0 picosiemens. Coinjection of RMK2 and RCK1 (RMK1) (Baumann, A., Grupe, A., Ackermann, A., and Pongs, O. (1988) EMBO J. 7, 2457-2463; Koren, G., Liman, E. R., Logothetis, D. E., Nadal-Ginard, B., and Hess, P. (1990) Neuron 4, 39-51) into Xenopus oocytes resulted in the expression of currents that have tetraethylammonium inhibition curves that differ from the linear combination of inhibition curves of the two types expressed individually. Thus, RMK2 and RCK1 (RMK1) can form heteromultimers. RNA blot hybridization analysis revealed that the RMK2 transcript is developmentally regulated in a different manner in the rat skeletal muscle, ventricle, and atrium.
AB - We have cloned a cDNA (RMK2) coding for a Shaker type delayed rectifier K+ channel from a rat skeletal muscle cDNA library. The clone encodes a putative protein of 602 amino acids, identical with a rat brain K+ channel Kv1 (Swanson, R., Marshall, R., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luneau, C. J., Antanavage, J., Oliva, C., Burhow, S. A., Bennet, C., Stein, R. B., and Kaczmarek, L. K. (1990) Neuron 4, 929-939). Northern blot analysis showed that RMK2 is expressed in skeletal and cardiac muscle. RNase protection analysis showed that the 3′-noncoding regions of the brain, cardiac, and skeletal muscle RMK2 transcripts are identical. Cloning of the gene confirmed that the protein is encoded by a single exon (Swanson et al. (1990) Neuron 4, 929-939). We expressed RMK2 in Xenopus oocytes and showed that it encodes noninactivating delayed rectifier K+ channels, resistant to block by external tetraethylammonium, with a small unitary conductance of 8.0 picosiemens. Coinjection of RMK2 and RCK1 (RMK1) (Baumann, A., Grupe, A., Ackermann, A., and Pongs, O. (1988) EMBO J. 7, 2457-2463; Koren, G., Liman, E. R., Logothetis, D. E., Nadal-Ginard, B., and Hess, P. (1990) Neuron 4, 39-51) into Xenopus oocytes resulted in the expression of currents that have tetraethylammonium inhibition curves that differ from the linear combination of inhibition curves of the two types expressed individually. Thus, RMK2 and RCK1 (RMK1) can form heteromultimers. RNA blot hybridization analysis revealed that the RMK2 transcript is developmentally regulated in a different manner in the rat skeletal muscle, ventricle, and atrium.
UR - http://www.scopus.com/inward/record.url?scp=0025864092&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 1712780
AN - SCOPUS:0025864092
SN - 0021-9258
VL - 266
SP - 13324
EP - 13328
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -