TY - JOUR
T1 - Polychromatic 4-coloring of cubic bipartite plane graphs
AU - Horev, Elad
AU - Katz, Matthew J.
AU - Krakovski, Roi
AU - Nakamoto, Atsuhiro
PY - 2012/2/28
Y1 - 2012/2/28
N2 - It is proved that the vertices of a cubic bipartite plane graph can be colored with four colors such that each face meets all four colors. This is tight, since any such graph contains at least six faces of size four.
AB - It is proved that the vertices of a cubic bipartite plane graph can be colored with four colors such that each face meets all four colors. This is tight, since any such graph contains at least six faces of size four.
KW - Cubic bipartite plane graph
KW - Eulerian triangulation
KW - Polychromatic coloring
UR - http://www.scopus.com/inward/record.url?scp=82255173796&partnerID=8YFLogxK
U2 - 10.1016/j.disc.2011.11.016
DO - 10.1016/j.disc.2011.11.016
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:82255173796
SN - 0012-365X
VL - 312
SP - 715
EP - 719
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 4
ER -