Placental handling of fatty acid ethyl esters: Perfusion and subcellular studies

Daphne Chan, Brenda Knie, Rada Boskovic, Gideon Koren

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

The measurement of fatty acid ethyl esters (FAEE) in neonatal meconium is a novel test to confirm prenatal ethanol exposure. The origin of FAEE in the maternal-placental-fetal unit is not known. The objectives of this study were to investigate whether FAEE are transferred and metabolized by the human placenta. Isolated placental cotyledons were perfused with a mixture of four FAEE (palmitic, stearic, oleic, and linoleic acid ethyl esters) commonly detected in the meconium of neonates exposed to ethanol in utero, and the transfer of FAEE to the fetal unit was investigated in the absence and presence of albumin. The metabolic degradation of FAEE by human placental microsomes was subsequently determined. FAEE disappeared from the maternal circulation but remained undetectable in the fetal unit following perfusions. The addition of albumin had no effect on FAEE transfer. The unrecoverable fraction of individual FAEE in the perfusion system accounted for >50% of the initial amount used, suggesting significant metabolic degradation. Subcellular studies documented the enzymatic degradation of FAEE by placental microsomes (mean Km, 35-95 μM; Vmax, 0.6-1.8 nmol/min/mg for individual FAEE). FAEE at levels found in alcoholics that are originated from the mother are not transferred to the fetus because they are taken up and degraded extensively by the human placenta. Hence, FAEE detected in neonatal matrices are likely produced by the fetus from ethanol that has been transferred to and metabolized by the fetus, rendering FAEE a powerful direct biomarker reflective of true fetal exposure to ethanol in utero.

Original languageEnglish
Pages (from-to)75-82
Number of pages8
JournalJournal of Pharmacology and Experimental Therapeutics
Volume310
Issue number1
DOIs
StatePublished - Jul 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'Placental handling of fatty acid ethyl esters: Perfusion and subcellular studies'. Together they form a unique fingerprint.

Cite this