Peroxide-Driven Nitrogen Fixation Reactions for Energy Storage Applications

James Ebenezer, Parthiban Velayudham, Alex Schechter

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Electrochemical nitrogen fixation offers a sustainable and environmentally friendly alternative to conventional ammonia synthesis, yet it currently faces significant challenges in terms of energy efficiency, catalytic activity, and economic feasibility. Here, this work presents a novel peroxide-mediated dual-step strategy designed to efficiently address these challenges using advanced energy materials. Ruthenium oxide and cobalt phthalocyanine catalysts facilitate simultaneous hydrogen peroxide formation and nitrogen oxidation to nitrate ((Formula presented.)) at an exceptionally low potential of 0.1 V versus RHE, achieving a nitrate yield of 71.1 ± 4.2 µg h¹ cm2 and a Faradaic efficiency (FE) of 2.1 ± 0.4%. Subsequently, the in situ generated (Formula presented.) is electrochemically reduced to ammonia (NH₃) at −0.35 V, delivering an impressive NH₃ yield of 147.2 ± 13.7 µg h¹ cm2 with 13.8 ± 1.7% FE. This combined approach significantly outperforms traditional direct electrochemical nitrogen reduction methods, enhancing ammonia yield ≈30-fold. Furthermore, a detailed techno-economic analysis demonstrates substantial economic advantages, significantly reducing ammonia production costs compared to direct nitrogen reduction. Although this system remains somewhat more expensive than direct nitrate reduction, the latter faces inherent challenges such as limited substrate availability and preprocessing requirements. This work advances sustainable ammonia synthesis by introducing a highly effective catalytic strategy integrated with meaningful energy and economic considerations.

Original languageEnglish
Article number2501583
JournalAdvanced Energy Materials
Volume15
Issue number32
DOIs
StatePublished - 26 Aug 2025

Keywords

  • air
  • electrochemical nitrate reduction reaction
  • hydrogen peroxide
  • nitrogen oxidation
  • radicals
  • simultaneous
  • two-step ammonia production

Fingerprint

Dive into the research topics of 'Peroxide-Driven Nitrogen Fixation Reactions for Energy Storage Applications'. Together they form a unique fingerprint.

Cite this