Abstract
Forward Brillouin scattering interactions support the sensing and analysis of media outside the cladding boundaries of standard fibers, where light cannot reach. Quantitative point-sensing based on this principle has yet to be reported. In this work, we report a forward Brillouin scattering point-sensor in a commercially available, off-the-shelf multi-core fiber. Pump light at the inner, on-axis core of the fiber is used to stimulate a guided acoustic mode of the entire fiber cross-section. The acoustic wave, in turn, induces photoelastic perturbations to the reflectivity of a Bragg grating inscribed in an outer, off-axis core of the same fiber. The measurements successfully analyze refractive index perturbations on the tenth decimal point and distinguish between ethanol and water outside the centimeter-long grating. The measured forward Brillouin scattering linewidths agree with predictions. The acquired spectra are unaffected by forward Brillouin scattering outside the grating region. The results add point-analysis to the portfolio of forward Brillouin scattering optical fiber sensors.
| Original language | English |
|---|---|
| Pages (from-to) | 39321-39328 |
| Number of pages | 8 |
| Journal | Optics Express |
| Volume | 30 |
| Issue number | 22 |
| DOIs | |
| State | Published - 24 Oct 2022 |
| Externally published | Yes |