On Secure Computation of Solitary Output Functionalities with and Without Broadcast

Bar Alon, Eran Omri

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Solitary output secure computation models scenarios, where a single entity wishes to compute a function over an input that is distributed among several mutually distrusting parties. The computation should guarantee some security properties, such as correctness, privacy, and guaranteed output delivery. Full security captures all these properties together. This setting is becoming very important, as it is relevant to many real-world scenarios, such as service providers wishing to learn some statistics on the private data of their users. In this paper, we study full security for solitary output three-party functionalities in the point-to-point model (without broadcast) assuming at most a single party is corrupted. We give a characterization of the set of three-party Boolean functionalities and functionalities with up to three possible outputs (over a polynomial-size domain) that are computable with full security in the point-to-point model against a single corrupted party. We also characterize the set of three-party functionalities (over a polynomial-size domain) where the output receiving party has no input. Using this characterization, we identify the set of parameters that allow certain functionalities related to private set intersection to be securely computable in this model. Our characterization in particular implies that, even in the solitary output setting, without broadcast not many “interesting” three-party functionalities can be computed with full security. Our main technical contribution is a reinterpretation of the hexagon argument due to Fischer et al. [Distributed Computing ’86]. While the original argument relies on the agreement property (i.e., all parties output the same value) to construct an attack, we extend the argument to the solitary output setting, where there is no agreement. Furthermore, using our techniques, we were also able to advance our understanding of the set of solitary output three-party functionalities that can be computed with full security, assuming broadcast but where two parties may be corrupted. Specifically, we extend the set of such functionalities that were known to be computable, due to Halevi et al. [TCC ’19].

Original languageEnglish
Title of host publicationTheory of Cryptography - 21st International Conference, TCC 2023, Proceedings
EditorsGuy Rothblum, Hoeteck Wee
PublisherSpringer Science and Business Media Deutschland GmbH
Pages94-123
Number of pages30
ISBN (Print)9783031486173
DOIs
StatePublished - 2023
Event21st International conference on Theory of Cryptography Conference, TCC 2023 - Taipei, Taiwan, Province of China
Duration: 29 Nov 20232 Dec 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14370 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International conference on Theory of Cryptography Conference, TCC 2023
Country/TerritoryTaiwan, Province of China
CityTaipei
Period29/11/232/12/23

Keywords

  • broadcast
  • impossibility result
  • point-to-point communication
  • secure multiparty computation
  • solitary output

Fingerprint

Dive into the research topics of 'On Secure Computation of Solitary Output Functionalities with and Without Broadcast'. Together they form a unique fingerprint.

Cite this