On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers

Chaya Keller, Shakhar Smorodinsky, Gábor Tardos

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Let HDd(p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p ≥ q ≥ d + 1). In a celebrated proof of the Hadwiger-Debrunner conjecture, Alon and Kleitman proved that HDd(p, q) exists for all p ≥ q ≥ d + 1. Specifically, they prove that HDd(p, d + 1) is O(pd2+d). This paper has two parts. In the first part we present several improved bounds on HDd(p, q). In particular, we obtain the first near tight estimate of HDd(p, q) for an extended range of values of (p, q) since the 1957 Hadwiger-Debrunner theorem. In the second part we prove a (p, 2)-theorem for families in R2 with union complexity below a specific quadratic bound. Based on this, we introduce a polynomial time constant factor approximation algorithm for MAX-CLIQUE of intersection graphs of convex sets satisfying this property. It is not likely that our constant factor approximation can be improved to a PTAS as MAX-CLIQUE for intersection graphs of fat ellipses is known to be APX-HARD and fat ellipses have sub-quadratic union complexity.

Original languageEnglish
Title of host publication28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
EditorsPhilip N. Klein
Pages2254-2263
Number of pages10
ISBN (Electronic)9781611974782
DOIs
StatePublished - 2017
Externally publishedYes
Event28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017 - Barcelona, Spain
Duration: 16 Jan 201719 Jan 2017

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Volume0

Conference

Conference28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
Country/TerritorySpain
CityBarcelona
Period16/01/1719/01/17

Fingerprint

Dive into the research topics of 'On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers'. Together they form a unique fingerprint.

Cite this