Abstract
Non-ionizing millimeter-waves (MMW) interact with cells in a variety of ways. Here the inhibited cell division effect was investigated using 85–105 GHz MMW irradiation within the International Commission on Non-Ionizing Radiation Protection (ICNIRP) non-thermal 20 mW/cm2 safety standards. Irradiation using a power density of about 1.0 mW/cm2 SAR over 5–6 h on 50 cells/µL samples of Saccharomyces cerevisiae model organism resulted in 62% growth rate reduction compared to the control (sham). The effect was specific for 85–105 GHz range and was energy-and cell density-dependent. Irradiation of wild type and ∆rad52 (DNA damage repair gene) deleted cells presented no differences of colony growth profiles indicating non-thermal MMW treatment does not cause permanent genetic alterations. Dose versus response relations studied using a standard horn antenna (~1.0 mW/cm2) and compared to that of a compact waveguide (17.17 mW/cm2) for increased power delivery resulted in complete termination of cell division via non-thermal processes supported by temperature rise measurements. We have shown that non-thermal MMW radiation has potential for future use in treatment of yeast related diseases and other targeted biomedical outcomes.
Original language | English |
---|---|
Article number | 6635 |
Journal | Applied Sciences (Switzerland) |
Volume | 11 |
Issue number | 14 |
DOIs | |
State | Published - 2 Jul 2021 |
Keywords
- Millimeter waves
- Non-invasive devices
- Non-ionizing radiation
- Novel biomedical applications
- Yeast