TY - JOUR
T1 - Muscle strength and hypertrophy occur independently of protein supplementation during short-term resistance training in untrained men
AU - Boone, Carleigh H.
AU - Stout, Jeffrey R.
AU - Beyer, Kyle S.
AU - Fukuda, David H.
AU - Hoffman, Jay R.
N1 - Publisher Copyright:
© 2015, National Research Council of Canada. All rights Reserved.
PY - 2015/3/30
Y1 - 2015/3/30
N2 - Short-term resistance training has consistently demonstrated gains in muscular strength, but not hypertrophy. Post-resistance training protein ingestion is posited to augment the acute anabolic stimulus, thus potentially accelerating changes in muscle size and strength. The purpose of this investigation was to examine the effects of 4 weeks of resistance training with protein supplementation on strength and muscle morphology changes in untrained men. Participants (mean ± SD; N = 18; age, 22.0 ± 2.5 years; body mass index, 25.1 ± 5.4 kg·m–2) were randomly assigned to a resistance training + protein group (n = 9; whey (17 g) + colostrum (3 g) + leucine (2 g)) or a resistance training + placebo group (n = 9). One-repetition maximum (1RM) strength in the leg press (LP) and leg extension (LE) exercises, maximal isometric knee extensor strength (MVIC), and muscle morphology (thickness (MT), cross-sectional area (CSA), pennation angle) of the dominant rectus femoris (RF) and vastus lateralis (VL) was assessed before and after training. Participants performed LP and LE exercises (3 × 8–10; at 80% 1RM) 3 days/week for 4 weeks. Data were analyzed using 2-way ANOVA with repeated measures. Four weeks of resistance training resulted in significant increases in LP (p < 0.001), LE (p < 0.001), MVIC (p < 0.001), RF MT (p < 0.001), RF CSA (p < 0.001), VL MT (p < 0.001), and VL CSA (p < 0.001). No between-group differences were observed. Although nutrition can significantly affect training adaptations, these results suggest that short-term resistance training augments muscle strength and size in previously untrained men with no additive benefit from post exercise protein supplementation.
AB - Short-term resistance training has consistently demonstrated gains in muscular strength, but not hypertrophy. Post-resistance training protein ingestion is posited to augment the acute anabolic stimulus, thus potentially accelerating changes in muscle size and strength. The purpose of this investigation was to examine the effects of 4 weeks of resistance training with protein supplementation on strength and muscle morphology changes in untrained men. Participants (mean ± SD; N = 18; age, 22.0 ± 2.5 years; body mass index, 25.1 ± 5.4 kg·m–2) were randomly assigned to a resistance training + protein group (n = 9; whey (17 g) + colostrum (3 g) + leucine (2 g)) or a resistance training + placebo group (n = 9). One-repetition maximum (1RM) strength in the leg press (LP) and leg extension (LE) exercises, maximal isometric knee extensor strength (MVIC), and muscle morphology (thickness (MT), cross-sectional area (CSA), pennation angle) of the dominant rectus femoris (RF) and vastus lateralis (VL) was assessed before and after training. Participants performed LP and LE exercises (3 × 8–10; at 80% 1RM) 3 days/week for 4 weeks. Data were analyzed using 2-way ANOVA with repeated measures. Four weeks of resistance training resulted in significant increases in LP (p < 0.001), LE (p < 0.001), MVIC (p < 0.001), RF MT (p < 0.001), RF CSA (p < 0.001), VL MT (p < 0.001), and VL CSA (p < 0.001). No between-group differences were observed. Although nutrition can significantly affect training adaptations, these results suggest that short-term resistance training augments muscle strength and size in previously untrained men with no additive benefit from post exercise protein supplementation.
KW - Hypertrophy
KW - Muscle morphology
KW - Muscle strength
KW - Protein
KW - Supplementation
UR - http://www.scopus.com/inward/record.url?scp=84938779216&partnerID=8YFLogxK
U2 - 10.1139/apnm-2015-0027
DO - 10.1139/apnm-2015-0027
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26154345
AN - SCOPUS:84938779216
SN - 1715-5312
VL - 40
SP - 797
EP - 802
JO - Applied Physiology, Nutrition and Metabolism
JF - Applied Physiology, Nutrition and Metabolism
IS - 8
ER -