Abstract
Game-tree search algorithms have contributed greatly to the success of computerized players in two-player extensive-form games. In multi-player games there has been less success, partly because of the difficulty of recognizing and reasoning about the inter-player relationships that often develop and change during human game-play. Simplifying assumptions (e.g., assuming each player selfishly aims to maximize its own payoff) have not worked very well in practice. We describe a new algorithm for multi-player games, So- cially-oriented Search (SOS), that incorporates ideas from Social Value Orientation theory from social psychology. We provide a theoretical study of the algorithm, and a method for recognizing and reasoning about relationships as they develop and change during a game. Our empirical evaluations of SOS in the strategic board game Quoridor show it to be significantly more effective against players with dynamic interrelationships than the current state-of-the-art algorithms. Categories and Subject Descriptors 1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search-Graph and tree search strategies General Terms Economics, Algorithms.
Original language | English |
---|---|
Pages | 313-320 |
Number of pages | 8 |
State | Published - 2011 |
Externally published | Yes |
Event | 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011 - Taipei, Taiwan, Province of China Duration: 2 May 2011 → 6 May 2011 |
Conference
Conference | 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011 |
---|---|
Country/Territory | Taiwan, Province of China |
City | Taipei |
Period | 2/05/11 → 6/05/11 |
Keywords
- Game-tree search
- Multi-player games