Minimal Liouville gravity from Douglas string equation

A. Belavin, V. Belavin

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We describe the connection between Minimal Liouville gravity, Douglas string equation and Frobrenius manifolds. We show that the appropriate solution of the Douglas equation and a proper transformation from the KdV to the Liouville frames leads to the fulfilment of the selection rules of the underlying conformal field theory. We review the properties of Minimal Liouville gravity and Frobenius manifolds and show that the required solution of the string equation takes simple form in the flat coordinates on the Frobenious manifold in the case of unitary Minimal Liouville gravity.

Original languageEnglish
Pages (from-to)269-282
Number of pages14
JournalMoscow Mathematical Journal
Volume15
Issue number2
DOIs
StatePublished - 1 Apr 2015
Externally publishedYes

Keywords

  • Conformal field theory
  • Erobenius manifolds
  • Integrable models
  • String theory
  • Tau function
  • Two-dimensional gravity

Fingerprint

Dive into the research topics of 'Minimal Liouville gravity from Douglas string equation'. Together they form a unique fingerprint.

Cite this