TY - JOUR
T1 - Mechanical effects in PEM Fuel Cell
T2 - Application to modeling of assembly procedure
AU - Martemianov, S.
AU - Gueguen, M.
AU - Grandidier, J. C.
AU - Bograchev, D.
PY - 2009
Y1 - 2009
N2 - Mechanical effects can influence significantly electrical performance and life time of PEM fuel cells. A linear elasticplastic 2D model of fuel cell with hardening is used for modeling of assembly procedure of fuel cells. The model simulates mechanical behavior of the main components of real fuel cell (the membrane, the gas diffusion layers, the graphite plates, and the seal joints) and clamping elements (the steel plates, the bolts, the nuts). The stress and plastic deformation in MEA have been calculated using ABAQUS code. The results are presented on the local and the global scales with respect to the realistic clamping conditions. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell and takes into account the border effects, in particular the influence of seal joints.
AB - Mechanical effects can influence significantly electrical performance and life time of PEM fuel cells. A linear elasticplastic 2D model of fuel cell with hardening is used for modeling of assembly procedure of fuel cells. The model simulates mechanical behavior of the main components of real fuel cell (the membrane, the gas diffusion layers, the graphite plates, and the seal joints) and clamping elements (the steel plates, the bolts, the nuts). The stress and plastic deformation in MEA have been calculated using ABAQUS code. The results are presented on the local and the global scales with respect to the realistic clamping conditions. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell and takes into account the border effects, in particular the influence of seal joints.
KW - ABAQUS
KW - Fuel cell design
KW - Nafion
KW - Proton exchange membrane (PEM)
UR - http://www.scopus.com/inward/record.url?scp=69249196689&partnerID=8YFLogxK
U2 - 10.36884/jafm.2.02.11869
DO - 10.36884/jafm.2.02.11869
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:69249196689
SN - 1735-3572
VL - 2
SP - 49
EP - 54
JO - Journal of Applied Fluid Mechanics
JF - Journal of Applied Fluid Mechanics
IS - 2
ER -