Mechanical effects in PEM Fuel Cell: Application to modeling of assembly procedure

S. Martemianov, M. Gueguen, J. C. Grandidier, D. Bograchev

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Mechanical effects can influence significantly electrical performance and life time of PEM fuel cells. A linear elasticplastic 2D model of fuel cell with hardening is used for modeling of assembly procedure of fuel cells. The model simulates mechanical behavior of the main components of real fuel cell (the membrane, the gas diffusion layers, the graphite plates, and the seal joints) and clamping elements (the steel plates, the bolts, the nuts). The stress and plastic deformation in MEA have been calculated using ABAQUS code. The results are presented on the local and the global scales with respect to the realistic clamping conditions. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell and takes into account the border effects, in particular the influence of seal joints.

Original languageEnglish
Pages (from-to)49-54
Number of pages6
JournalJournal of Applied Fluid Mechanics
Issue number2
StatePublished - 2009
Externally publishedYes


  • Fuel cell design
  • Nafion
  • Proton exchange membrane (PEM)


Dive into the research topics of 'Mechanical effects in PEM Fuel Cell: Application to modeling of assembly procedure'. Together they form a unique fingerprint.

Cite this