Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc-Ion Batteries

Jia Jia Ye, Pei Hua Li, Hao Ran Zhang, Zong Yin Song, Tianju Fan, Wanqun Zhang, Jie Tian, Tao Huang, Yitai Qian, Zhiguo Hou, Netanel Shpigel, Li Feng Chen, Shi Xue Dou

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Vanadium-based intercalation materials have attracted considerable attention for aqueous zinc-ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy-enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov-ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X-ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov-ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov-ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov-ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen-vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect-functionalized advanced materials.

Original languageEnglish
Article number2305659
JournalAdvanced Functional Materials
Volume33
Issue number46
DOIs
StatePublished - 9 Nov 2023
Externally publishedYes

Keywords

  • aqueous rechargeable zinc-ion batteries
  • flexible large-scale energy storage systems
  • oxygen vacancy-enriched VO structures
  • vanadium-based cathode materials

Fingerprint

Dive into the research topics of 'Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc-Ion Batteries'. Together they form a unique fingerprint.

Cite this