TY - JOUR
T1 - Magnetic resonance imaging with superparamagnetic iron oxide particles for the detection of myocardial reperfusion
AU - Rozenman, Yoseph
AU - Zou, Xueming
AU - Kantor, Howard L.
PY - 1991
Y1 - 1991
N2 - The effect of superparamagnetic iron oxide particles on magnetic resonance myocardial signal intensity was examined in order to define the ability of this agent to identify normal, ischemic, and reperfused myocardium. Data were obtained from 6 normal rats (group 1) and from 6 heterotopic isogenic rat heart transplants (group 2) at 4.7 T with a multislice spin-echo sequence. Images were acquired in (a) normal rats before and after the infusion of 36 μmol Fe/kg of AMI-25 (group 1) and (b) rat heart transplants during control, global myocardial ischemia (before and after the injection of 72 μmol Fe/kg of AMI-25), and following reperfusion (group 2). Myocardial signal intensity decreased by 36 ± 4%, p < 0.001, following contrast infusion in normal hearts (group 1). The intensity remained constant in the rat heart transplants (group 2) during coronary occlusion, both before and after the infusion of AMI-25 and decreased by 61 ± 7%, p < 0.001, upon reperfusion. The larger effect of AMI-25 in reperfused as compared to normal myocardium suggests the presence of ischemia-induced hyperemia. There was no significant difference (analysis of variance) among intensities from different myocardial regions in either group at any stage of the experiment. We conclude that the use of AMI-25 permits identification of normal, ischemic, and reperfused myocardium and may therefore be helpful for the early detection of reperfusion following thrombolytic therapy for acute myocardial infarction.
AB - The effect of superparamagnetic iron oxide particles on magnetic resonance myocardial signal intensity was examined in order to define the ability of this agent to identify normal, ischemic, and reperfused myocardium. Data were obtained from 6 normal rats (group 1) and from 6 heterotopic isogenic rat heart transplants (group 2) at 4.7 T with a multislice spin-echo sequence. Images were acquired in (a) normal rats before and after the infusion of 36 μmol Fe/kg of AMI-25 (group 1) and (b) rat heart transplants during control, global myocardial ischemia (before and after the injection of 72 μmol Fe/kg of AMI-25), and following reperfusion (group 2). Myocardial signal intensity decreased by 36 ± 4%, p < 0.001, following contrast infusion in normal hearts (group 1). The intensity remained constant in the rat heart transplants (group 2) during coronary occlusion, both before and after the infusion of AMI-25 and decreased by 61 ± 7%, p < 0.001, upon reperfusion. The larger effect of AMI-25 in reperfused as compared to normal myocardium suggests the presence of ischemia-induced hyperemia. There was no significant difference (analysis of variance) among intensities from different myocardial regions in either group at any stage of the experiment. We conclude that the use of AMI-25 permits identification of normal, ischemic, and reperfused myocardium and may therefore be helpful for the early detection of reperfusion following thrombolytic therapy for acute myocardial infarction.
KW - Iron oxide
KW - Magnetic resonance imaging
KW - Myocardial ischemia
KW - Nuclear magnetic resonance
KW - Rat
KW - Reperfusion
UR - https://www.scopus.com/pages/publications/0026317331
U2 - 10.1016/0730-725X(91)90538-W
DO - 10.1016/0730-725X(91)90538-W
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 1766318
AN - SCOPUS:0026317331
SN - 0730-725X
VL - 9
SP - 933
EP - 939
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
IS - 6
ER -