Light-Induced Atomic Desorption in Microfabricated Vapor Cells for Demonstrating Quantum Optical Applications

Eliran Talker, Pankaj Arora, Roy Zektzer, Yoel Sebbag, Mark Dikopltsev, Uriel Levy

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In recent years, we have observed substantial efforts towards the miniaturization of atomic vapor cells from the centimeter scale down to the millimeter scale and even lower, to enable efficient and compact light-vapor interactions with a higher degree of integration, lower heating power, and other prominent advantages. However, miniaturization typically comes at the cost of a reduced optical path, effectively reducing the contrast of the optical signal. To overcome this obstacle, we perform light-induced atomic desorption (LIAD) on a microfabricated buffer-gas-filled vapor cell and significantly increase the contrast of the optical signal. LIAD is a nonthermal process, whereby atoms absorbed at a surface are released under nonresonant-light illumination. A compact on-chip atomic optical isolator at room temperature is presented using the LIAD technique in our millimeter-sized fabricated vapor cell. The use of LIAD is found to be an excellent option to realize a narrow-line-width optical isolator at room temperature. Furthermore, the LIAD technique is utilized to demonstrate dichroic atomic vapor laser lock (DAVLL) in the same microfabricated vapor cell without heating. Taking advantage of the LIAD-enhanced DAVLL signal in the miniaturized vapor cell, we stabilize a 780-nm laser with a precision better than 400 kHz, without the need for heating and with no frequency modulation. Eliminating the need for heating may pave the way for remote applications, where the cell may be far away from the lasers, in scenarios where electrical currents and electrical contacts are undesired and difficult to implement.

Original languageEnglish
Article numberL051001
JournalPhysical Review Applied
Volume15
Issue number5
DOIs
StatePublished - May 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Light-Induced Atomic Desorption in Microfabricated Vapor Cells for Demonstrating Quantum Optical Applications'. Together they form a unique fingerprint.

Cite this