TY - JOUR
T1 - Life-Cycle Assessment of Sculptured Tiles for Building Envelopes in Mediterranean Climate
AU - Pushkar, Svetlana
AU - Yezioro, Abraham
AU - Hershcovich, Cheli
AU - Grobman, Yasha J.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2
Y1 - 2022/2
N2 - Life-cycle assessments (LCAs) were conducted to evaluate sculptured cement mortar tiles, proposed by Hershcovich et al. (2021), and conventional cement mortar flat tiles for thermal insulation of a typical residential building in Mediterranean climate. The production (P) and operational energy (OE) stages were compared between the sculptured tiles and the conventional flat tiles. The P stage used Portland cement with 95% clinker (CEM I) and Portland limestone cement with 65% clinker (CEM II). The OE stage used 31% coal, 56% natural gas, and 13% photovoltaic (PV) (adopted in 2020) and 8% coal, 57% natural gas, and 35% PV (planned for 2025). The ReCiPe2016 single-score method was used to assess environmental damage over short (20 years), long (100 years), and infinite (1000 years) time horizons of living pollutants. The results show that the use of sculptured tiles caused environmental damage in the short time horizon and environmental benefits in the long and infinite time horizons in the 2020 scenario, while it led to environmental benefits only in the infinite time horizon in the 2025 scenario.
AB - Life-cycle assessments (LCAs) were conducted to evaluate sculptured cement mortar tiles, proposed by Hershcovich et al. (2021), and conventional cement mortar flat tiles for thermal insulation of a typical residential building in Mediterranean climate. The production (P) and operational energy (OE) stages were compared between the sculptured tiles and the conventional flat tiles. The P stage used Portland cement with 95% clinker (CEM I) and Portland limestone cement with 65% clinker (CEM II). The OE stage used 31% coal, 56% natural gas, and 13% photovoltaic (PV) (adopted in 2020) and 8% coal, 57% natural gas, and 35% PV (planned for 2025). The ReCiPe2016 single-score method was used to assess environmental damage over short (20 years), long (100 years), and infinite (1000 years) time horizons of living pollutants. The results show that the use of sculptured tiles caused environmental damage in the short time horizon and environmental benefits in the long and infinite time horizons in the 2020 scenario, while it led to environmental benefits only in the infinite time horizon in the 2025 scenario.
KW - Building envelope
KW - Life-cycle assessment
KW - ReCiPe
KW - Thermal insulation tiles
UR - http://www.scopus.com/inward/record.url?scp=85123992704&partnerID=8YFLogxK
U2 - 10.3390/buildings12020165
DO - 10.3390/buildings12020165
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85123992704
SN - 2075-5309
VL - 12
JO - Buildings
JF - Buildings
IS - 2
M1 - 165
ER -